ELECTRONICS SYSTEM DESIGN

SECTION-3

SEQUENTIAL MACHINES

Lecture 11: Sequential Logic Latches & Flip-flops

- Introduction
- Memory Elements
- Pulse-Triggered Latch
 - ❖ S-R Latch
 - ❖ Gated S-R Latch
 - ❖ Gated D Latch
- Edge-Triggered Flip-flops
 - ❖ S-R Flip-flop
 - ❖ D Flip-flop
 - ❖ J-K Flip-flop
 - * T Flip-flop
- Asynchronous Inputs

Introduction

A sequential circuit consists of a feedback path, and employs some memory elements.

Sequential circuit = Combinational logic + Memory Elements

Introduction

- There are two types of sequential circuits:
 - * synchronous: outputs change only at specific time
 - asynchronous: outputs change at any time
- Multivibrator: a class of sequential circuits. They can be:
 - bistable (2 stable states)
 - monostable or one-shot (1 stable state)
 - astable (no stable state)
- Bistable logic devices: latches and flip-flops.
- Latches and flip-flops differ in the method used for changing their state.

Memory Elements

Memory element: a device which can remember value indefinitely, or change value on command from its inputs.

Characteristic table:

Command (at time t)	Q(t)	Q(t+1)
Set	Х	1
Reset	Х	0
Memorise /	0	0
No Change	1	1

Q(t): current state

Q(t+1) or Q^+ : next state

Memory Elements

Memory element with clock. Flip-flops are memory elements that change state on clock signals.

Clock is usually a square wave.

Memory Elements

- Two types of triggering/activation:
 - ❖ pulse-triggered
 - ❖ edge-triggered
- Pulse-triggered
 - latches
 - **❖** ON = 1, OFF = 0
- Edge-triggered
 - ❖ flip-flops
 - positive edge-triggered (ON = from 0 to 1; OFF = other time)
 - negative edge-triggered (ON = from 1 to 0; OFF = other time)

- Complementary outputs: Q and Q'.
- When Q is HIGH, the latch is in SET state.
- When Q is LOW, the latch is in RESET state.
- For active-HIGH input S-R latch (also known as NOR gate latch),

```
R=HIGH (and S=LOW) \Rightarrow RESET state

S=HIGH (and R=LOW) \Rightarrow SET state

both inputs LOW \Rightarrow no change

both inputs HIGH \Rightarrow Q and Q' both LOW (invalid)!
```

■ For active-LOW input S'-R' latch (also known as NAND gate latch),

```
R'=LOW (and S'=HIGH) \Rightarrow RESET state S'=LOW (and R'=HIGH) \Rightarrow SET state both inputs HIGH \Rightarrow no change both inputs LOW \Rightarrow Q and Q' both HIGH (invalid)!
```

 Drawback of S-R latch: invalid condition exists and must be avoided.

Characteristics table for active-high input S-R latch:

S	R	Q	Q'	
0	0	NC	NC	No change. Latch remained in present state.
1	0	1	0	Latch SET.
0	1	0	1	Latch RESET.
1	1	0	0	Invalid condition.

Characteristics table for active-low input S'-R' latch:

S'	R'	Q	Ò	
1	1	NC	NC	No change. Latch remained in present state.
0	1	1	0	Latch SET.
1	0	0	1	Latch RESET.
0	0	1	1	Invalid condition.

Active-HIGH input S-R latch

Active-LOW input S'-R' latch

Gated S-R Latch

■ S-R latch + enable input (EN) and 2 NAND gates \rightarrow gated S-R latch.

Gated S-R Latch

- Outputs change (if necessary) only when EN is HIGH.
- Under what condition does the invalid state occur?
- Characteristic table:

EN=1

Q(t)	S	R	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	indeterminate
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	indeterminate

S	R	Q(t+1)	
0	0	Q(t)	No change
0	1	0	Reset
1	0	1	Set
1	1	indeterminate	

$$Q(t+1) = S + R'.Q$$
$$S.R = 0$$

Gated D Latch

- Make R input equal to $S' \rightarrow gated D latch$.
- D latch eliminates the undesirable condition of invalid state in the S-R latch.

Gated D Latch

- When *EN* is HIGH,
 - ❖ D=HIGH → latch is SET
 - \bullet D=LOW \rightarrow latch is RESET
- Hence when EN is HIGH, Q 'follows' the D (data) input.
- Characteristic table:

EN	D	Q(t+1)	
1	0	0	Reset
1	1	1	Set
0	X	Q(t)	No change

When EN=1, Q(t+1) = D

Latch Circuits: Not Suitable

- Latch circuits are not suitable in synchronous logic circuits.
- When the enable signal is active, the excitation inputs are gated directly to the output Q. Thus, any change in the excitation input immediately causes a change in the latch output.
- The problem is solved by using a special timing control signal called a *clock* to restrict the times at which the states of the memory elements may change.
- This leads us to the edge-triggered memory elements called flip-flops.

Edge-Triggered Flip-flops

- Flip-flops: synchronous bistable devices
- Output changes state at a specified point on a triggering input called the clock.
- Change state either at the positive edge (rising edge) or at the negative edge (falling edge) of the clock signal.

Edge-Triggered Flip-flops

S-R, D and J-K edge-triggered flip-flops. Note the ">" symbol at the clock input.

Positive edge-triggered flip-flops

Negative edge-triggered flip-flops

S-R Flip-flop

- S-R flip-flop: on the triggering edge of the clock pulse,
 - ❖ S=HIGH (and R=LOW) \Rightarrow SET state
 - ❖ R=HIGH (and S=LOW) ⇒ RESET state
 - ♦ both inputs LOW ⇒ no change
 - ♦ both inputs HIGH ⇒ invalid
- Characteristic table of positive edge-triggered S-R flip-flop:

S	R	CLK	Q(t+1)	Comments
0	0	Χ	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
1	1	↑	?	Invalid

X = irrelevant ("don't care")

↑ = clock transition LOW to HIGH

S-R Flip-flop

- It comprises 3 parts:
 - ❖ a basic NAND latch
 - ❖ a pulse-steering circuit
 - ❖ a pulse transition detector (or edge detector) circuit
- The pulse transition detector detects a rising (or falling) edge and produces a very short-duration spike.

S-R Flip-flop

The pulse transition detector.

Positive-going transition (rising edge)

Negative-going transition (falling edge)

D Flip-flop

- D flip-flop: single input D (data)
 - ◆ D=HIGH ⇒ SET state
 - ❖ D=LOW ⇒ RESET state
- Q follows D at the clock edge.
- Convert S-R flip-flop into a D flip-flop: add an inverter.

D	CLK	Q(t+1)	Comments
1	↑	1	Set
0	\uparrow	0	Reset

↑ = clock transition LOW to HIGH

A positive edge-triggered D flip-flop formed with an S-R flip-flop.

D Flip-flop

■ Application: Parallel data transfer. To transfer logic-circuit outputs X, Y, Z to flip-flops Q_1 , Q_2 and Q_3 for storage.

^{*} After occurrence of negative-going transition

J-K Flip-flop

- J-K flip-flop: Q and Q' are fed back to the pulsesteering NAND gates.
- No invalid state.
- Include a toggle state.
 - ❖ J=HIGH (and K=LOW) \Rightarrow SET state
 - ❖ K=HIGH (and J=LOW)

 □ RESET state
 - ♦ both inputs LOW ⇒ no change
 - ♦ both inputs HIGH ⇒ toggle

J-K Flip-flop

■ J-K flip-flop.

Characteristic table.

J	K	CLK	Q(t+1)	Comments
0	0	↑	Q(t)	No change
0	1	\uparrow	0	Reset
1	0	\uparrow	1	Set
_ 1	1	\uparrow	Q(t)'	Toggle

$$Q(t+1) = J.Q' + K'.Q$$

Q	J	K	Q(t+1)
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	1
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

T Flip-flop

T flip-flop: single-input version of the J-K flip flop, formed by tying both inputs together.

Characteristic table.

T	CLK	Q(t+1)	Comments
0	↑	Q(t)	No change
1	↑	Q(t)'	Toggle

$$Q(t+1) = T.Q' + T'.Q$$

Q	T	Q(t+1)
0	0	0
0	1	1
1	0	1
1	1	0

T Flip-flop

Application: Frequency division.

Application: Counter (to be covered in Lecture 13.)

Asynchronous Inputs

- S-R, D and J-K inputs are synchronous inputs, as data on these inputs are transferred to the flipflop's output only on the triggered edge of the clock pulse.
- Asynchronous inputs affect the state of the flip-flop independent of the clock; example: preset (PRE) and clear (CLR) [or direct set (SD) and direct reset (RD)]
- When *PRE*=HIGH, *Q* is immediately set to HIGH.
- When *CLR*=HIGH, *Q* is immediately cleared to LOW.
- Flip-flop in normal operation mode when both PRE and CLR are LOW.

Asynchronous Inputs

A J-K flip-flop with active-LOW preset and clear

Types of Flip-flops

• SR flip-flop (Set, Reset)

• T flip-flop (Toggle)

• D flip-flop (Delay)

JK flip-flop

Excitation Tables

Previous State -> Present State	S	R
0 -> 0	0	X
0 -> 1	1	0
1 -> 0	0	1
1 -> 1	X	0

Previous State -> Present State	Т
0 -> 0	0
0 -> 1	1
1 -> 0	1
1 -> 1	0

Excitation Tables

Previous State -> Present State	D
0 -> 0	0
0 -> 1	1
1 -> 0	0
1 -> 1	1

Previous State -> Present State	J	K
0 -> 0	0	X
0 -> 1	1	X
1 -> 0	X	1
1 -> 1	X	0

Timing Diagrams

	S	R
0->0	0	Х
0->1	1	0
1->0	0	1
1->1	Х	0

	T
0->0	0
0->1	1
1->0	1
1->1	0

Timing Diagrams

	D
0->0	0
0->1	1
1->0	0
1->1	1

	J	K
0->0	0	Х
0->1	1	Х
1->0	Х	1
1->1	Х	0

Converting Flip-flops

Use T flip-flop to implement D flip-flop

D	Q+
0	0
1	1
1	

D\Q+	0	1
0	0	0
1	1	1

D\Q+	0	1
0	0	1
1	1	0

$$T = DQ' + D'Q$$

Converting flip-flops

Use T flip-flop to implement D flip-flop

Converting Flip-flops

Use T flip-flop to implement JK flip-flop

Т	Q+
0	Q
1	Q'

JK\Q+	0	1
00	0	1
01	0	0
11	1	0
10	1	1

JK\Q+	0	1
00	0	0
01	0	1
11	1	1
10	1	0

J	K	Q+
0	0	Q
0	1	0
1	0	1
1	1	Q'

$$T = JQ' + KQ$$

Converting flip-flops

Use T flip-flop to implement JK flip-flop

Registers

- Sample data using clock
- Hold data between clock cycles
- Computation (and delay) occurs between registers

Timing Methodologies (cont'd)

- Definition of terms
 - setup time: minimum time before the clocking event by which the input must be stable (T_{su})
 - hold time: minimum time after the clocking event until which the input must remain stable (T_h)

there is a timing "window" around the clocking event during which the input must remain stable and unchanged in order to be recognized

Typical timing specifications

- Positive edge-triggered D flip-flop
 - setup and hold times
 - minimum clock width
 - propagation delays (low to high, high to low, max and typical)

all measurements are made from the clocking event that is, the rising edge of the clock

System Clock Frequency

- Register transfer must fit into one clock cycle
 - reg t_{pd} + C.L. t_{pd} + reg t_{su} < T_{clk}
 - Use maximum delays
 - Find the "critical path"
 - Longest register-register delay

Short Paths

- Can a path have too little delay?
 - Yes: Hold time can be violated
 - Unless $t_{pd} > t_h$
 - Use min delay (contamination delay)
- Fortunately, most registers have hold time = 0
 - But there can still be a problem! Clock skew...

- Cannot make clock arrive at registers at the same time
- If skew > 0:
 - $t_{pd} > t_{h+} t_{skew}$
 - Clock skew can cause system failure
 - Can you fix this after you've fabbed the chip?

- Cannot make clock arrive at registers at the same time
- If skew > 0:
 - $t_{pd} > t_{h+} t_{skew}$
 - Clock skew can cause system failure
 - Can you fix this after you've fabbed the chip?

- If skew < 0:
 - $t_{clk} > reg t_{pd} + CL t_{pd} + reg t_{SU} + |t_{skew}|$
 - Can you fix this after fab?

- If skew < 0:
 - $t_{clk} > reg t_{pd} + CL t_{pd} + reg t_{SU} + |t_{skew}|$
 - Can you fix this after fab?

- Correct behavior assumes that all storage elements sample at exactly the same time
- Not possible in real systems:
 - clock driven from some central location
 - different wire delay to different points in the circuit
- Problems arise if skew is of the same order as FF contamination delay
- Gets worse as systems get faster (wires don't improve as fast)
 - 1) distribute clock signals against the data flow
 - 2) wire carrying the clock between two communicating components should be as short as possible
 - 3) try to make all wires from the clock generator be the same length=> clock tree

Nasty Example

- What can go wrong?
- How can you fix it?

Other Types of Latches and Flip-Flops

- D-FF is ubiquitous
 - simplest design technique, minimizes number of wires preferred in PLDs and FPGAs good choice for data storage register edge-triggered has most straightforward timing constraints
- Historically J-K FF was popular
 versatile building block, often requires less total logic
 two inputs require more wiring and logic
 can always be implemented using D-FF
- Level-sensitive latches in special circumstances
 popular in VLSI because they can be made very small (4 T)
 fundamental building block of all other flip-flop types
 two latches make a D-FF
- Preset and clear inputs are highly desirable
 - System reset

Comparison of latches and flip-flops

transparent, flow-throughQlatch (level-sensitive) latch

behavior is the same unless input changes while the clock is high

What About External Inputs?

- Internal signals are OK
 - Can only change when clock changes
- External signals can change at any time
 - Asynchronous inputs
 - Truly asynchronous
 - Produced by a different clock
- This means register may sample a signal that is changing
 - Violates setup/hold time
 - What happens?

Sampling external inputs

Synchronization failure

- Occurs when FF input changes close to clock edge
 - the FF may enter a metastable state neither a logic 0 nor 1 –
 - it may stay in this state an indefinite amount of time
 - this is not likely in practice but has some probability

oscilloscope traces demonstrating
synchronizer failure and eventual
Sequential Logic
decay to steady state

Calculating probability of failure

For a single synchronizer

Mean-Time Between Failure (MTBF) = exp (
$$t_r / \tau$$
) / ($T0 \times f_c \times f_a$)

where a failure occurs if metastability persists beyond time tr

- t_r is the resolution time extra time in clock period for settling
 - Tclk $(t_{pd} + T_{CL} + t_{setup})$
- f_c is the frequency of the FF clock
- f_a is the number of asynchronous input changes per second applied to the FF
- T0 and τ are constaints that depend on the FF's electrical characteristics (e.g., gain or steepness of curve)
 - example values are T0 = 1ms and τ = 30ps (sensitive to temperature, voltage, cosmic rays, etc.).
- Must add probabilities from all synchronizers in system $1/MTBFsystem = \Sigma 1/MTBFsynch$

Xilinx Measurements

XC2VP4 Metastable Recovery ~300MHz Clock, 50MHz Data

Xilinx Measurements

Metastable Progress 2002 vs 1996 ~100 MHz Clock, 1 MHz Data

What does this circuit do?

What's wrong with this?

What does this circuit do?

How much better is this?

• Can you do better?

Guarding against synchronization failure

- Give the register time to decide
 - Probability of failure cannot be reduced to 0, but it can be reduced
- Slow down the system clock?
- Use very fast technology for synchronizer -> quicker decision?

Stretching the Resolution Time

Also slows the sample rate and transfer rate

Sampling Rate

How fast does your sample clock need to be?

Sampling Rate

How fast does your sample clock need to be?

Sampling Rate

- What if sample clock can't go faster?
- If input clock is not available, no solution(?)
- If input clock is available (e.g. video codec)

Increasing sample rate

- The problem is the **relative** sample rate
 - Slow down the input clock!

Another Problem with Asynchronous inputs

- What goes wrong here? (Hint: it's not a metastability thing)
- What is the fix?

More Asynchronous inputs

- What is the problem?
- What is the fix?

Important Rule!

Exactly one register makes the synchronizing decision

More Asynchronous inputs

 Can we input asynchronous data values with several bits?

More Asynchronous inputs

 How can we input asynchronous data values with several bits?

70

What Went Wrong?

- Each bit has a different delay
 - Wire lengths differ
 - Gate thresholds differ
 - Driver speeds are different
 - Register delays are different
 - Rise vs. Fall times
 - Clock skews to register bits
- Bottom line "data skew" is inevitable
 - aka Bus Skew
 - Longer wires => More skew
- What is the solution??

Sending Multiple Data Bits

- Must send a "clock" with the data
 - Waits until data is stable
 - De-skewing delay
- f(clkB) > 2 f(clkA)

Sending Multiple Data Bits

- Balancing path delays . . .
- What's wrong with this solution?
- What's the right way to do it?

Sending Multiple Data Bits

• The right way to do it . . .

Sending Multiple Data Bits

• Slightly different alternative . . .

Sequential Logic Counters and Registers

Counters

- Introduction: Counters
- Asynchronous (Ripple) Counters
- Asynchronous Counters with MOD number < 2ⁿ
- Asynchronous Down Counters
- Cascading Asynchronous Counters

Lecture 13: Sequential Logic Counters and Registers

- Synchronous (Parallel) Counters
- Up/Down Synchronous Counters
- Designing Synchronous Counters
- Decoding A Counter
- Counters with Parallel Load

Lecture 13: Sequential Logic Counters and Registers

Registers

- Introduction: Registers
 - **❖** Simple Registers
 - Registers with Parallel Load
- Using Registers to implement Sequential Circuits
- Shift Registers
 - Serial In/Serial Out Shift Registers
 - Serial In/Parallel Out Shift Registers
 - Parallel In/Serial Out Shift Registers
 - ❖ Parallel In/Parallel Out Shift Registers

Lecture 13: Sequential Logic Counters and Registers

- Bidirectional Shift Registers
- An Application Serial Addition
- Shift Register Counters
 - Ring Counters
 - Johnson Counters
- Random-Access Memory (RAM)

Introduction: Counters

- Counters are circuits that cycle through a specified number of states.
- Two types of counters:
 - synchronous (parallel) counters
 - asynchronous (ripple) counters
- Ripple counters allow some flip-flop outputs to be used as a source of clock for other flip-flops.
- Synchronous counters apply the same clock to all flip-flops.

- Asynchronous counters: the flip-flops do not change states at exactly the same time as they do not have a common clock pulse.
- Also known as ripple counters, as the input clock pulse "ripples" through the counter – cumulative delay is a drawback.
- n flip-flops \rightarrow a MOD (modulus) 2^n counter. (Note: A MOD-x counter cycles through x states.)
- Output of the last flip-flop (MSB) divides the input clock frequency by the MOD number of the counter, hence a counter is also a frequency divider.

- Example: 2-bit ripple binary counter.
- Output of one flip-flop is connected to the clock input of the next more-significant flip-flop.

Example: 3-bit ripple binary counter.

- Propagation delays in an asynchronous (rippleclocked) binary counter.
- If the accumulated delay is greater than the clock pulse, some counter states may be misrepresented!

Example: 4-bit ripple binary counter (negativeedge triggered).

Asyn. Counters with MOD no. $< 2^{\circ}$

- States may be skipped resulting in a truncated sequence.
- Technique: force counter to recycle before going through all of the states in the binary sequence.
- Example: Given the following circuit, determine the counting sequence (and hence the modulus no.)

Example (cont'd):

MOD-6 counter produced by clearing (a MOD-8 binary counter) when count of six (110) occurs.

Example (cont'd): Counting sequence of circuit (in CBA order).

- Exercise: How to construct an asynchronous MOD-5 counter? MOD-7 counter? MOD-12 counter?
- Question: The following is a MOD-? counter?

- Decade counters (or BCD counters) are counters with 10 states (modulus-10) in their sequence. They are commonly used in daily life (e.g.: utility meters, odometers, etc.).
- Design an asynchronous decade counter.

Asynchronous decade/BCD counter (cont'd).

Asynchronous Down Counters

- So far we are dealing with up counters. Down counters, on the other hand, count downward from a maximum value to zero, and repeat.
- Example: A 3-bit binary (MOD-2³) down counter.

Asynchronous Down Counters

Example: A 3-bit binary (MOD-8) down counter.

Cascading Asynchronous Counters

- Larger asynchronous (ripple) counter can be constructed by cascading smaller ripple counters.
- Connect last-stage output of one counter to the clock input of next counter so as to achieve highermodulus operation.
- Example: A modulus-32 ripple counter constructed from a modulus-4 counter and a modulus-8 counter.

Cascading Asynchronous Counters

 Example: A 6-bit binary counter (counts from 0 to 63) constructed from two 3-bit counters.

Cascading Asynchronous Counters

- If counter is a not a binary counter, requires additional output.
- Example: A modulus-100 counter using two decade counters.

TC = 1 when counter recycles to 0000

- Synchronous (parallel) counters: the flip-flops are clocked at the same time by a common clock pulse.
- We can design these counters using the sequential logic design process (covered in Lecture #12).
- Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state			ext ate	Flip-flop inputs			
A ₁	A_0	A_1^+	A_0^+	<i>TA</i> ₁	TA ₀		
0	0	0	1	0	1		
0	1	1	0	1	1		
1	0	1	1	0	1		
1	1	0	0	1	1		

 Example: 2-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J,K inputs).

Present state			ext ate	-	-flop uts	
A ₁	A_0	A_1^{\dagger}	A_0^+	<i>TA</i> ₁	TA ₀	$TA_1 = A_0$
0	0	0	1	0	1	
0	1	1	0	1	1	$TA_0 = 1$
1	0	1	1	0	1	
1	1	0	0	1	1	

 Example: 3-bit synchronous binary counter (using T flip-flops, or JK flip-flops with identical J, K inputs).

		Present state			state i			lip-flo	-	
	$\overline{A_2}$		A_0	$\overline{\mathbf{A_2}^+}$	A_1^{\dagger}	$\overline{A_0}^{\dagger}$	TA ₂	TA ₁	TA ₀	
	0	0	0	0	0	1	0	0	1	_
	0	0	1	0	1	0	0	1	1	
	0	1	0	0	1	1	0	0	1	
	0	1	1	1	0	0	1	1	1	
	1	0	0	1	0	1	0	0	1	
	1	0	1	1	1	0	0	1	1	
	1	1	0	1	1	1	0	0	1	
	1	1	1	0	0	0	1	1	1	
		_	A ₁	_			A_1	_		A 1
A ₂ {		╫	1] ,	$oldsymbol{q_2} \left\{ igc ight.$		1 1 1		A_2	{
		$\widetilde{A_0}$			(_		Ã ₀			A_0
	$TA_2 = A$	$\mathbf{A}_{1}.\mathbf{A}_{0}$				TA_1	$=A_0$			$TA_0 = 1$

Example: 3-bit synchronous binary counter (cont'd).

$$TA_2 = A_1.A_0$$
 $TA_1 = A_0 TA_0 = 1$

Note that in a binary counter, the nth bit (shown underlined) is always complemented whenever

$$011...11 \rightarrow 100...00$$
or $111...11 \rightarrow 000...00$

- Hence, X_n is complemented whenever $X_{n-1}X_{n-2} ... X_1X_0 = 11...11$.
- As a result, if T flip-flops are used, then $TX_n = X_{n-1} \cdot X_{n-2} \cdot \dots \cdot X_1 \cdot X_0$

Example: 4-bit synchronous binary counter.

$$TA_3 = A_2 \cdot A_1 \cdot A_0$$

 $TA_2 = A_1 \cdot A_0$
 $TA_1 = A_0$
 $TA_0 = 1$

Example: Synchronous decade/BCD counter.

Clock pulse	Q_3	Q_2	Q_1	Q_0
Initially	0	0	0	0
1	0	0	0	1
2	0	0	1	0
3	0	0	1	1
4	0	1	0	0
5	0	1	0	1
6	0	1	1	0
7	0	1	1	1
8	1	0	0	0
9	1	0	0	1
10 (recycle)	0	0	0	0

$$T_0 = 1$$
 $T_1 = Q_3'.Q_0$
 $T_2 = Q_1.Q_0$
 $T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$

Example: Synchronous decade/BCD counter (cont'd).

$$T_0 = 1$$
 $T_1 = Q_3'.Q_0$
 $T_2 = Q_1.Q_0$
 $T_3 = Q_2.Q_1.Q_0 + Q_3.Q_0$

Up/Down Synchronous Counters

- Up/down synchronous counter: a bidirectional counter that is capable of counting either up or down.
- An input (control) line $\overline{Up/Down}$ (or simply Up) specifies the direction of counting.
 - ❖ Up/Down = 1 → Count upward
 - $\clubsuit Up/Down = 0 \rightarrow Count downward$

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter.

Clock pulse	Up	Q_2	Q_1	Q_0	Down
0		0	0	0	▼, □
1		0	0	1	√
2	>	0	1	0	≼
3	<u>~</u>	0	1	1	₹
4	<u> </u>	1	0	0	₹
5	<u> </u>	1	0	1	~
6	<u> </u>	1	1	0	_
7		1	1	1	7

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Up counter Down
$$TQ_0 = 1 counter$$

$$TQ_1 = Q_0 TQ_0 = 1$$

$$TQ_2 = Q_0 \cdot Q_1 TQ_1 = Q_0'$$

$$TQ_2 = Q_0' \cdot Q_1'$$

Up/Down Synchronous Counters

Example: A 3-bit up/down synchronous binary counter (cont'd). $TQ_0 = 1$

$$TQ_0 = 1$$

 $TQ_1 = (Q_0.Up) + (Q_0'.Up')$
 $TQ_2 = (Q_0.Q_1.Up) + (Q_0'.Q_1'.Up')$

Designing Synchronous Counters

- Covered in Lecture #12.
- Example: A 3-bit Gray code counter (using JK flip-flops).

Present state			Next state			Flip-flop inputs					
Q_2	Q_1	Q_0	Q_2^+	Q_1^+	Q_0^+	JQ_2	KQ_2	JQ_1	KQ ₁	JQ_0	KQ_0
0	0	0	0	0	1	0	X	0	X	1	X
0	0	1	0	1	1	0	X	1	X	X	0
0	1	0	1	1	0	1	X	X	0	0	X
0	1	1	0	1	0	0	X	X	0	X	1
1	0	0	0	0	0	X	1	0	X	0	X
1	0	1	1	0	0	X	0	0	X	X	1
1	1	0	1	1	1	X	0	X	0	1	X
1	1	1	1	0	1	X	0	X	1	X	0

Designing Synchronous Counters

3-bit Gray code counter: flip-flop inputs.

Designing Synchronous Counters

3-bit Gray code counter: logic diagram.

$$JQ_2 = Q_1.Q_0'$$
 $JQ_1 = Q_2'.Q_0$ $JQ_0 = (Q_2 \oplus Q_1)'$ $KQ_2 = Q_1'.Q_0'$ $KQ_1 = Q_2.Q_0$ $KQ_0 = Q_2 \oplus Q_1$

Decoding A Counter

- Decoding a counter involves determining which state in the sequence the counter is in.
- Differentiate between active-HIGH and active-LOW decoding.
- Active-HIGH decoding: output HIGH if the counter is in the state concerned.
- Active-LOW decoding: output LOW if the counter is in the state concerned.

Decoding A Counter

Example: MOD-8 ripple counter (active-HIGH decoding).

Decoding A Counter

Example: To detect that a MOD-8 counter is in state 0 (000) or state 1 (001).

Example: To detect that a MOD-8 counter is in the odd states (states 1, 3, 5 or 7), simply use C.

Counters with Parallel Load

- Counters could be augmented with parallel load capability for the following purposes:
 - ❖ To start at a different state
 - To count a different sequence
 - ❖ As more sophisticated register with increment/decrement functionality.

Counters with Parallel Load

Different ways of getting a MOD-6 counter:

(a) Binary states 0,1,2,3,4,5.

Inputs have no effect (b) Binary states 0,1,2,3,4,5.

(c) Binary states 10,11,12,13,14,15.

(d) Binary states 3,4,5,6,7,8.

Counters with Parallel Load

4-bit counter with parallel load.

Introduction: Registers

- An n-bit register has a group of n flip-flops and some logic gates and is capable of storing n bits of information.
- The flip-flops store the information while the gates control when and how new information is transferred into the register.
- Some functions of register:
 - retrieve data from register
 - store/load new data into register (serial or parallel)
 - shift the data within register (left or right)

Simple Registers

- No external gates.
- Example: A 4-bit register. A new 4-bit data is loaded every clock cycle.

Registers With Parallel Load

- Instead of loading the register at every clock pulse, we may want to control when to load.
- Loading a register: transfer new information into the register. Requires a load control input.
- Parallel loading: all bits are loaded simultaneously.

Registers With Parallel Load

Using Registers to implement

 Sequential Circuits
 A sequential circuit may consist of a register (memory) and a combinational circuit.

- The external inputs and present states of the register determine the next states of the register and the external outputs, through the combinational circuit.
- The combinational circuit may be implemented by any of the methods covered in MSI components and Programmable Logic Devices.

Sequential Circuits

Using Registers to implement Sequential Circuits Example 1:

$$A_1^+ = \Sigma \text{ m}(4,6) = A_1.x'$$

 $A_2^+ = \Sigma \text{ m}(1,2,5,6) = A_2.x' + A_2'.x = A_2 \oplus x$
 $y = \Sigma \text{ m}(3,7) = A_2.x$

Present			Next				
sta	ate	Input	St	ate	Output		
A_1	A_2	X	A_1^{\dagger}	A_2^+	У		
0	0	0	0	0	0		
0	0	1	0	1	0		
0	1	0	0	1	0		
0	1	1	0	0	1		
1	0	0	1	0	0		
1	0	1	0	1	0		
1	1	0	1	1	0		
1	1	1	0	0	1		

Using Registers to implement Sequential Circuits Example 2: Repeat example 1, but use a ROM.

<u>Address</u>			0	utpu	ts
1	2	3	1	2	3
0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	0	1	0
0	1	1	0	0	1
1	0	0	1	0	0
1	0	1	0	1	0
1	1	0	1	1	0
1	1	1	0	0	1

ROM truth table

Shift Registers

- Another function of a register, besides storage, is to provide for data movements.
- Each stage (flip-flop) in a shift register represents one bit of storage, and the shifting capability of a register permits the movement of data from stage to stage within the register, or into or out of the register upon application of clock pulses.

Shift Registers

 Basic data movement in shift registers (four bits are used for illustration).

Serial In/Serial Out Shift Registers

 Accepts data serially – one bit at a time – and also produces output serially.

Serial In/Serial Out Shift Registers

Application: Serial transfer of data from one register to another.

Serial In/Serial Out Shift Registers

Serial-transfer example.

Timing Pulse	Shi	ft re	giste	er A	Shi	ft re	giste	er <i>B</i>	Serial output of B
Initial value	(1)	0、	1,	1	0	0、	1、	0	0
After T ₁	1	1	0	1	1	0	0	1	1
After T ₂	1	1	1	0	1	1	0	0	0
After T ₃	0	1	1	1	0	1	1	0	0
After T ₄	1	0	1	1	1	0	1	1	1

Serial In/Parallel Out Shift Registers

- Accepts data serially.
- Outputs of all stages are available simultaneously.

 $Q_0 Q_1 Q_2 Q_3$

Parallel In/Serial Out Shift Registers

Bits are entered simultaneously, but output is serial.

Parallel In/Serial Out Shift Registers

Bits are entered simultaneously, but output is serial.

Logic symbol

Parallel In/Parallel Out Shift Registers

Simultaneous input and output of all data bits.

Bidirectional Shift Registers

Data can be shifted either left or right, using a control line RIGHT/LEFT (or simply RIGHT) to indicate the direction.

Bidirectional Shift Registers

4-bit bidirectional shift register with parallel load.

Bidirectional Shift Registers

4-bit bidirectional shift register with parallel load.

Mode (Control	
S ₁	S ₀	Register Operation
0	0	No change
0	1	Shift right
1	0	Shift left
1	1	Parallel load

An Application – Serial Addition

- Most operations in digital computers are done in parallel. Serial operations are slower but require less equipment.
- A serial adder is shown below. $A \leftarrow A + B$.

An Application – Serial Addition

■ A = 0100; B = 0111. A + B = 1011 is stored in A after 4 clock pulses.

Initial:	A: 0 1 0 <u>0</u> B: 0 1 1 <u>1</u>	Q : <u>0</u>
Step 1: 0 + 1 + 0 S = 1, C = 0	A: 1 0 1 <u>0</u> B: x 0 1 <u>1</u>	Q : <u>0</u>
Step 2: 0 + 1 + 0 S = 1, C = 0	A: 1 1 0 <u>1</u> B: x x 0 <u>1</u>	Q : <u>0</u>
Step 3: 1 + 1 + 0 S = 0, C = 1	A: 0 1 1 <u>0</u> B: x x x <u>0</u>	Q : <u>1</u>
Step 4: 0 + 0 + 1 S = 1, C = 0	A: 1 0 1 1 B: x x x x	Q : <u>0</u>

Shift Register Counters

- Shift register counter: a shift register with the serial output connected back to the serial input.
- They are classified as counters because they give a specified sequence of states.
- Two common types: the Johnson counter and the Ring counter.

Ring Counters

- One flip-flop (stage) for each state in the sequence.
- The output of the last stage is connected to the D input of the first stage.
- An *n*-bit ring counter cycles through *n* states.
- No decoding gates are required, as there is an output that corresponds to every state the counter is in.

Ring Counters

Example: A 6-bit (MOD-6) ring counter.

Clock	Q_0	Q_1	Q_2	Q_3	Q_4	Q_5
→0	1	0	0	0	0	0
1	0	1	0	0	0	0
2	0	0	1	0	0	0
3	0	0	0	1	0	0
4	0	0	0	0	1	0
└ 5	0	0	0	0	0	1

Johnson Counters

- The complement of the output of the last stage is connected back to the D input of the first stage.
- Also called the twisted-ring counter.
- Require fewer flip-flops than ring counters but more flip-flops than binary counters.
- An *n*-bit Johnson counter cycles through 2*n* states.
- Require more decoding circuitry than ring counter but less than binary counters.

Johnson Counters

Example: A 4-bit (MOD-8) Johnson counter.

Clock	Q_0	Q_1	Q_2	Q_3
<mark>→0</mark>	0	0	0	0
1	1	0	0	0
2	1	1	0	0
3	1	1	1	0
4	1	1	1	1
5	0	1	1	1
6	0	0	1	1
<u></u>	0	0	0	1

Johnson Counters

Decoding logic for a 4-bit Johnson counter.

Clock	A	В	С	D	Decoding
<mark>→0</mark>	0	0	0	0	A'.D'
1	1	0	0	0	A.B'
2	1	1	0	0	B.C'
3	1	1	1	0	C.D'
4	1	1	1	1	A.D
5	0	1	1	1	A'.B
6	0	0	1	1	B'.C
└ 7	0	0	0	1	C'.D

- A memory unit stores binary information in groups of bits called words.
- The data consists of n lines (for n-bit words). Data input lines provide the information to be stored (written) into the memory, while data output lines carry the information out (read) from the memory.
- The address consists of k lines which specify which word (among the 2^k words available) to be selected for reading or writing.
- The control lines Read and Write (usually combined into a single control line Read/Write) specifies the direction of transfer of the data.

Block diagram of a memory unit:

Content of a 1024 x 16-bit memory:

Memory address

binary	decimal	Memory content
000000000	0	1011010111011101
000000001	1	1010000110000110
000000010	2	0010011101110001
:	:	:
:	:	:
1111111101	1021	1110010101010010
1111111110	1022	0011111010101110
1111111111	1023	1011000110010101

- The Write operation:
 - Transfers the address of the desired word to the address lines
 - Transfers the data bits (the word) to be stored in memory to the data input lines
 - ❖ Activates the Write control line (set Read/Write to 0)
- The Read operation:
 - Transfers the address of the desired word to the address lines
 - ❖ Activates the *Read* control line (set *Read/Write* to 1)

The Read/Write operation:

Memory Enable	Read/Write	Memory Operation
0	X	None
1	0	Write to selected word
1	1	Read from selected word

- Two types of RAM: Static and dynamic.
 - Static RAMs use flip-flops as the memory cells.
 - Dynamic RAMs use capacitor charges to represent data. Though simpler in circuitry, they have to be constantly refreshed.

A single memory cell of the static RAM has the following logic and block diagrams.

■ Logic construction of a 4 x 3 RAM (with decoder and OD antan).

- An array of RAM chips: memory chips are combined to form larger memory.
- A 1K x 8-bit RAM chip:

Block diagram of a 1K x 8 RAM chip

End of segment