ELECTRONICS SYSTEM DESIGN

SECTION-3

SEQUENTIAL MACHINES

Lecture 11: Sequential Logic
atches & Flip-flops

Introduction
Memory Elements

Pulse-Triggered Latch

*+ S-R Latch

*» Gated S-R Latch

*» Gated D Latch
Edge-Triggered Flip-flops

*+» S-R Flip-flop

+* D Flip-flop

» J-K Flip-flop

T Flip-flop
Asynchronous Inputs

Introduction

" A sequential circuit consists of a feedback
path, and employs some memory elements.

Combinational
outputs Memory outputs

N

Combinational > Memory
logic > elements

External inputs

Sequential circuit = Combinational logic + Memory Elements

Introduction

There are two types of sequential circuits:
% synchronous: outputs change only at specific time
% asynchronous: outputs change at any time

Multivibrator: a class of sequential circuits. They
can be:

¢ bistable (2 stable states)
¢ monostable or one-shot (1 stable state)
% astable (no stable state)

Bistable logic devices: latches and flip-flops.

Latches and flip-flops differ in the method used
for changing their state.

Memory Elements

Memory element: a device which can remember
value indefinitely, or change value on command
from its inputs.

Memor Q
—_— y —
command element stored value

Characteristic table:

command | Q() | Q+1)
(at time 1) Q(t): current state

Set Q(t+1) or Q*: next state

Reset

Memorise /
No Change

RO X| X
Rlo| ol ~

Memory Elements

" Memory element with clock. Flip-flops are memory
elements that change state on clock signals.

command —

Memory
element

Q

— > stored value

T

clock

" Clock is usually g, sguargwave.

S

Positive edges

VO

= |

Negative edges

Memory Elements

" Two types of triggering/activation:
“ pulse-triggered
% edge-triggered

" Pulse-triggered

*» |latches
+“*ON=1, 0FF=0

" Edge-triggered
% flip-flops

% positive edge-triggered (ON = from 0 to 1; OFF = other
time)

% negative edge-triggered (ON = from 1 to O; OFF =
other time)

S-R Latch

Complementary outputs: Q and Q.
When Q is HIGH, the latch is in SET state.
When Q is LOW, the latch is in RESET state.

For active-HIGH input S-R latch (also known as NOR
gate latch),

R=HIGH (and S=LOW) = RESET state

S=HIGH (and R=LOW) = SET state

both inputs LOW = no change

both inputs HIGH = Q and Q' both LOW (invalid)!

S-R Latch

" For active-LOW input S'-R" latch (also known as
NAND gate latch),
R'=LOW (and S'=HIGH) = RESET state
S'=LOW (and R'=HIGH) = SET state
both inputs HIGH = no change
both inputs LOW = Q and Q' both HIGH (invalid)!

® Drawback of S-R latch: invalid condition
exists and must be avoided.

S-R Latch

" Characteristics table for active-high input S-R latch:

S|IR| Q Q'

ol ol Nc!|NC No chgnge. Latch
remained in present state.

110 1 0 Latch SET.

0|1 0 1 Latch RESET.

11 0 0 Invalid condition.

" Characteristics table for active-low input S'-R' latch:

S'IR'| Q Q'

111 Nc|NC No chgnge. Latch
remained in present state.

0|1 1 0 Latch SET.

1|0 0 1 Latch RESET.

0|0 1 1 Invalid condition.

—0
—0

b— Q'

S-R Latch

" Active-HIGH input S-R latch

S R [Q @
0 100R Q 1100V 70 1 o0 initial
m) 0 O (1 O (aferS=1, R=0)
| =)0] 0 1
0 001 S Q 0011 m) O O 0O 1 (after S=0, R=1)
=) 1 1 0O 0 invalid!

" Active-LOW input $’-R’ latch

> T Q
S R |Q O
R — o g 1 O 0O 1 initial
Q 1 1 |0 1 (aferS=1,R=0)
0 1 1 0
Q 1 1 1 O (after S'=0, R'=1)
R'— O O 1 1 invalid!

Gated S-R Latch

® S-R latch + enable input (EN) and 2 NAND

gates — gated S-R latch.

S_

Q
EN {
o}

R_

EN

— ('

HIGH.

Gated S-R Latch

® Qutputs change (if necessary) only when EN is

® Under what condition does the invalid state occur?

® Characteristic table:

EN=1

Q(t)

Q(t+1)

0

0

0

1
indeterminate

R P P RO o o

P P OOk kP OOl W

R O FLr O|k O, O| X0

1

0

1
indeterminate

S R Q(t+1)

0O O Q(t) No change
0 1 0 Reset

1 O 1 Set

1 1 iIndeterminate

Q(t+1) =S+ R'.Q
SR=0

Gated D Latch

" Make R input equal to S" — gated D latch.

® D latch eliminates the undesirable condition
of invalid state in the S-R latch.

Q D Lo
EN ——{ — EN
Q’ P Q
—>0—

Gated D Latch

" When EN is HIGH,
» D=HIGH — latch is SET
*» D=LOW — latch is RESET

" Hence when EN is HIGH, Q ‘follows’ the D (data)
input.

® Characteristic table:

EN D Q(t+1)
1 0 0 Reset
1 1 1 Set
0 X Q(t) No change

When EN=1, Q(t+1) =D

Latch Circuits: Not Suitable

" Latch circuits are not suitable in synchronous logic
circuits.

" When the enable signal is active, the excitation

inputs are gated directly to the output Q. Thus, any
change in the excitation input immediately causes a
change in the latch output.

" The problem is solved by using a special timing
control signal called a clock to restrict the times at
which the states of the memory elements may

change.

" This leads us to the edge-triggered memory
elements called flip-flops.

Edge-Triggered Flip-flops

" Flip-flops: synchronous bistable devices

® Qutput changes state at a specified point on a

triggering input called the clock.

® Change state either at the positive edge (rising
edge) or at the negative edge (falling edge) of the

clock signal.

Positive edges

N

~.

Negative edges

| Clock signal

Edge-Triggered Flip-flops

® S-R, D and J-K edge-triggered flip-flops. Note
the “>” symbol at the clock input.

S Q —|P I R Q

>C >C PC

R D— Q' D— Q'] K D— Q'
Positive edge-triggered flip-flops

>C —aPC —aPC

R D— Q'] D— Q'] K D— Q'

Negative edge-triggered flip-flops

S-R Flip-flop

u S—RI flip-flop: on the triggering edge of the clock
pulse,

% S=HIGH (and R=LOW) = SET state

% R=HIGH (and S=LOW) = RESET state
% both inputs LOW = no change

% both inputs HIGH = invalid

" Characteristic table of positive edge-triggered S-R
flip-flop:

S R CLK Q(t+1) Comments
O O X Q(t) No change
o 1 1 0 Reset

i 0o 7 1 Set

1 1 1 ? Invalid

X =irrelevant (“don’t care”)
T = clock transition LOW to HIGH

S-R Flip-flop

" |t comprises 3 parts:
% a basic NAND latch
% a pulse-steering circuit
% a pulse transition detector (or edge detector) circuit

" The pulse transition detector detects a rising (or
falling) edge and produces a very short-duration

spike.

S-R Flip-flop

The pulse transition detector.

S_‘
Q
Pulse
CLK J L transition {
detector .
o Q
CLK' CLK'
CLK —T-[>o— . | cLk —T-[>o—oD_)
_)— CLK o CLK
CLK CLK
CLK' i CLK' |
CLK* | CLK* |
Positive-going transition Negative-going transition
(rising edge) (falling edge)

D Flip-flop

" D flip-flop: single input D (data)
¢ D=HIGH = SET state
¢ D=LOW = RESET state

" Qfollows D at the clock edge.
" Convert S-R flip-flop into a D flip-flop: add an inverter.

D—®—1S 0 D CLK Q(t+1) Comments
CLK >C 1 1 1 Set
o 1 0 Reset

>orR P Q

A positive edge-triggered D flip-
flop formed with an S-R flip-flop.

T =clock transition LOW to HIGH

D Flip-flop

" Application: Parallel data transfer.

To transfer logic-circuit outputs X, Y, Z to flip-
flops Q,, Q, and Q, for storage.

D OQF— Ql=x*

1 D_
X, 2
Combinational |y = D L 02 = v+
logic circuit] ? 02 =
Z e—oP>CLK
QpP—
D Q Q3=27*
Transfer I e—o>CLK
QpP—

* After occurrence of negative-going transition

J-K Flip-flop

" J-K flip-flop: Q and Q' are fed back to the pulse-
steering NAND gates.

® No invalid state.

" Include a toggle state.
% J=HIGH (and K=LOW) = SET state
% K=HIGH (and J=LOW) = RESET state
% both inputs LOW = no change
% both inputs HIGH = toggle

" J-K flip-flop.
J
Pulse
CLK_I_l_ transition
detector
K

J-K Flip-flop

® Characteristic table.

J K CLK Q(t+1) Comments

o o ¢ Q(t) No change

o 1 17 0 Reset

i1 o 1 1 Set

1 1 1 Q(t)) Toggle
Q(t+1) = J.Q"' + K.Q

Q J K Q(t+1)
O 0 O 0
0O 0 1 0
0O 1 0 1
0O 1 1 1
1 0 O 1
1 0 1 0
1 1 0 1
1 1 1 0

T Flip-flop

" T flip-flop: single-input version of the J-K flip flop,
formed by tying both inputs together.

T 9 T
Pulse Q J
CLK transition CLK >C
detector
Q K P— Q
" Characteristic table,

T CLK Q(t+1) Comments QT Q(t+1)

o 1 Q(t) No change 0 0 0

1 1 Q) Toggle 0 1 1

1 0 1

1 1 0

Q(t+l) =T.Q"+ T.Q

T Flip-flop

" Application: Frequency division.

High
I
CLK >C
K D—
clk fyyyyyyyL

o I L 1L 1 11

Divide clock frequency by 2.

High High
4 JYRur
CLK >C >C
K P K P

cLk UL

Divide clock frequency by 4.

" Application: Counter (to be covered in Lecture 13.)

Asynchronous Inputs

S-R, D and J-K inputs are synchronous inputs, as
data on these inlputs are transferred to the flip-
flop’s output only on the triggered edge of the clock
pulse.

Asynchronous inputs affect the state of the flip-flop
independent of the clock; example: preset (PRE)
? Eg)]clear (CLR) [or direct set (SD) and direct reset

When PRE=HIGH, Q is immediately set to HIGH.
When CLR=HIGH, Q is immediately cleared to LOW.

Flip-flop in normal operation mode when both PRE
and CLR are LOW.

Asynchronous Inputs
" A J-K flip-flop with active-LOW preset and clear

inputs.P——-RE PRE
S :
| Q
J Q Pulse
—> —Jtransition
C CLK detector
— Io_ 1
K Q " + Q
CLR CLR
CLK [J J | | | L |
|
= ———
CLR 1 T
Qg g N N
J=K=HIGH ~— Preset —}+—— Toggle ——+— Clear —+|

Types of Flip-flops

SR flip-flop (Set, Reset)

T flip-flop (Toggle)

D flip-flop (Delay)

JK flip-flop

Excitation Tables

0->0 0 X
0->1 1 0
1->0 0 1
1->1 X 0
0->0 0
0->1 1
1->0 1
1->1 0

Excitation Tables

Previous State -> Present State “

0->0 0
0->1 1
1->0 0
1->1 1
" previous tate > presentstate | 1 | K
0->0 0 X
0->1 1 X
1->0 X 1
1->1 X 0

S
0->0 0
0->1 1
1->0 0
1->1 X
T
0->0
0->1
1->0

1->1

Timing Diagrams

CLK

CLK

D
0->0 0
0->1 1
1->0 0
1->1 1

J
0->0 0
0->1 1
1->0 X
1->1 X

Timing Diagrams

CLK

CLK

e UseT flip-flop to implement D flip-flop

D Q+ D\Q+ 0 1 D\Q+ 0
0 0 0 0 0 0
1 1

1 1 1 1 1
T Q+
1 g T=DQ +D'Q

Converting flip-flops

e UseT flip-flop to implement D flip-flop

SET

's)

CLR

e UseT flip-flop to implement JK flip-flop

JK\Q+ 0 1
00 0 0
01 0 1
11 1 1
10 1 0

T Q+

0 Q

1 Q’
Q+

R |, |O|O|«

R (O, |O| R

Rir|o|Lo

JK\a+ | 0 1
00 0 1
01 0 0
11 1 0
10 1 1
T=JQ" + KQ

e UseT flip-flop to implement JK flip-flop

N7 N

Registers

 Sample data using clock

 Hold data between clock cycles

e Computation (and delay) occurs between registers

datain

D QI—

clock

>

 —

D Q

>

» data out

datain
clock

data out (Q)

| |

stable may change

)

stable X stable

Timing Methodologies (cont’d)

e Definition of terms

— setup time: minimum time before the clocking event
by which the input must be stable (T,)

— hold time: minimum time after the clocking event
until which the input must remain stable (T,)
T. T data
su Ih —D o— —D of——
input «—| —»
e T |
clock clock
there is a timing "window" stable changing
around the clocking event data :
during which the input must
remain stable and unchanged clock | | | |

in order to be recognized

Typical timing specifications

Positive edge-triggered D flip-flop

— setup and hold times

— minimum clock width

— propagation delays (low to high, high to low, max and typical)
D T,

Su

2ns| 1ns

n ons | 1ns

< »
< Ll |

/7
CLK T, 7ns \L \\
AN

<
< rl

° /1

[Zﬁns [1ﬁns
all measurements are made from the clocking event that is,
the rising edge of the clock

»

System Clock Frequency

e Register transfer must fit into one clock cycle
— reg tpd + C.L. tpg + reg tsy < T
— Use maximum delays
— Find the “critical path”
* Longest register-register delay

| Qo Combinational Qs L
> Logic

reg tpq tsu tn

X<

C-L- tpd

v

Short Paths

e (Can apath have too little delay?

— Yes: Hold time can be violated

— Unless tpg > th

— Use min delay (contamination delay)

e Fortunately, most registers have hold time =0

— But there can still be a problem! Clock skew...

_>

Q

Q

> —

-+

reg t

Clock Skew

Cannot make clock arrive at registers at the same time

If skew > O:
- tpd > Th + Tskew
— Clock skew can cause system failure

e Can you fix this after you’ve fabbed the chip?

Qo Qo
—> » @ —p
clko clk
D 1
clko
- reg toq

C|k1 ‘

g

skew

Clock Skew

Cannot make clock arrive at registers at the same time

If skew > O:

- tpd > Th + Tskew

— Clock skew can cause system failure

e Can you fix this after you’ve fabbed the chip?

Qo QO
—> p» —>
clk, P clk
N S
clk,
4‘ reg tpd
clk, Wi
|
E—— t ot

skew

Clock Skew

e |fskew<O:
— tak>reg tpd+ CL tod + reg tsu+ |tskew|
— Can you fix this after fab?

Qo Q1
—» —
clko clk
3D :
clkq
reg tpq
Qo X
} ‘} C.L. tpd
Q1

clk;

M tskew tsu 1:h

Clock Skew

e |fskew<O:
— tak>reg tpd+ CL tod + reg tsu+ |tskew|
— Can you fix this after fab?

—> R C.L. 2
cIk0 M clk,
(o)
cIk0
| regt,
Q
| ~ C.L.t,
Q
clk, |
+
-~ t tt

skew su h

Clock Skew

Correct behavior assumes that all storage elements sample at
exactly the same time
Not possible in real systems:

— clock driven from some central location

— different wire delay to different points in the circuit
Problems arise if skew is of the same order as FF contamination
delay
Gets worse as systems get faster (wires don't improve as fast)

— 1) distribute clock signals against the data flow

— 2) wire carrying the clock between two communicating components
should be as short as possible

— 3) try to make all wires from the clock generator be the same length
=> clock tree

Nasty Example

 What can go wrong?

e How can you fix it?

Q(A)

CLKA/2

D

Q(B)

Other Types of Latches and Flip-Flops

D-FF is ubiquitous
— simplest design technique, minimizes number of wires
preferred in PLDs and FPGAs
good choice for data storage register
edge-triggered has most straightforward timing constraints

Historically J-K FF was popular
versatile building block, often requires less total logic
two inputs require more wiring and logic
can always be implemented using D-FF

Level-sensitive latches in special circumstances
popular in VLSI because they can be made very small (4 T)
fundamental building block of all other flip-flop types
two latches make a D-FF

Preset and clear inputs are highly desirable
— System reset

Comparison of latches and flip-flops

_ID Q-
s \
CLK D I_I

positive }
edge-triggered
flip-flop

CLK

b qd- Qedge -

|
CLK
transparent, flow-throughQlatch

(|eVe|IZanhS't'Ve) behavior is the same unless input changes

while the clock is high

What About External Inputs?

e Internal signals are OK
— Can only change when clock changes
* External signals can change at any time
— Asynchronous inputs
— Truly asynchronous
— Produced by a different clock
* This means register may sample a signal that is changing
— Violates setup/hold time
— What happens?

—> > —>

clkA clkB

Sampling external inputs

CLKA

Q(A)

s | i

O(B) o0 o0 jom? | 1 |1

clkA clkB

Synchronization failure

e Occurs when FF input changes close to clock edge
— the FF may enter a metastable state — neither a logic O nor 1 —
— it may stay in this state an indefinite amount of time
— this is not likely in practice but has some probability

‘ logic 1

/f,.-f
/__Hf"

WNN

O @, -

hﬂhkq-

[/,

: logic O
logic O logic 1 0 .

[

Time —

small, but non-zero probability oscilloscope traces demonstrating

that the FF output will get stuck

: : synchronizer failure and eventual
in an in-between state

Sequential Logic
decay to steady state

54

Calculating probability of failure

For a single synchronizer
Mean-Time Between Failure (MTBF) =exp (t,/t)/(TOxf x f,)

where a failure occurs if metastability persists beyond time tr

t, is the resolution time - extra time in clock period for settling

— Telk - (tyg + Tep + tepyp)

f_is the frequency of the FF clock

f, is the number of asynchronous input changes per second applied to the FF

TO and t are constaints that depend on the FF's electrical characteristics
(e.g., gain or steepness of curve)

— example values are TO = 1ms and t = 30ps
(sensitive to temperature, voltage, cosmic rays, etc.).

Must add probabilities from all synchronizers in system
1/MTBFsystem = X 1/MTBFsynch

MTBF ({log seconds)

Xilinx Measurements

13

15

12

XC2VP4 Metastable Recovery
~300MHz Clock, 50MHz Data

i , 0B 1.5
—1 Billitn vears N -
I0B 1.65W 1 , }é
] - 7
- 1 Milljon Years L v
CLB 1.65 - S CLE 1.5V - A
L -
e P T ’//f 7
I : r
10000 Years \“:-..\‘ % P
r 2 . ra
‘l " f! ; K\
—— 1 “Yabr A s
N £ » |ioB13sv
a |x e Fa
1 Dal - /}\
. P
- . cLe 128y
4
C
/
0.0 05 1.0 1.5 2.0 25 2.0

Clockdo-0Q + Setup + Metastable Delay [n=s)

Sequential Logic

56

Xilinx Measurements

12

15

12

MTEF [log seconds)
o o

L)

Metastable Progress
2002vs 1996
~100MHz Clock, 1 MHz Data

1 Billio

“Years

— ACZ2WP40

LB 1.65%

1hdilliofvears

—XALZ2VP40

[XCZ2WP4G

LB 1.5V

LB 1.35%

— 1,000

edlr=

——— 1 vear

XCACOSCLE

— 1Day

3

4

Clockto-G+ Setup Metastable Delay (ns)

Sequen

tial Logic

57

What does this circuit do?

e What’s wrong with this?

clkA clkB

What does this circuit do?

* How much better is this?

clkA cIKB

e Canyou do better?

Guarding against synchronization
failure

* Give the register time to decide
— Probability of failure cannot be reduced to O, but it can be

reduced
 Slow down the system clock?

e Use very fast technology for synchronizer -> quicker decision?

e (Cascade two synchronizers?

asynchronous synchronized

D Q——*D Qf—*

input A A

input

Stretching the Resolution Time

e Also slows the sample rate and transfer rate

CLKA

DC D O CLKB/2

Sampling Rate

* How fast does your sample clock need to be?

A B C
—> —> >

clkA cIkB

Sampling Rate

How fast does your sample clock need to be?
— f(clkB) > f(clkA)

— f(clkB) > 2 f(data) (Nyquist) A
— —>
/|\ A
clkA cIkB
D(A) | |
A A A A A A A
ceka | L L O O L L
Q(A) | |
A A A A A
ccke [L[LT LT 1]
Q(B) 0O { 0 0 0

Sampling Rate

 What if sample clock can’t go faster?
e |f input clock is not available, no solution(?)
e |f input clock is available (e.g. video codec)

Increasing sample rate

e The problem is the relative sample rate

— Slow down the input clock!

A A A

‘ clkB

clkA

Another Problem with Asynchronous
Inputs

e What goes wrong here? (Hint: it’s not a metastability thing)

e Whatis the fix?

async
input

More Asynchronous inputs

e What is the problem?
e What is the fix?

async
- @72> 2

|

Important Rule!

* Exactly one register makes the synchronizing
decision

async
input

More Asynchronous inputs

e Can we input asynchronous data values with
several bits?

More Asynchronous inputs

e How can we input asynchronous data values
with several bits?

8 A8 B 8 C 8
—F > — P> v >

A\ JAN A\

clkA

CLKA |

Q(A)[7:0] x00 X xFF
A A A A A

CLKB |

QB)[7:0] | x00 | x00 {xO00/XFF{ xFF { xFF

Q(C)[7:0] | x00 { x00 | x00 XAA | XFF
B

What Went Wrong?

e Each bit has a different delay
— Wire lengths differ
— Gate thresholds differ
— Driver speeds are different

— Register delays are different
e Rise vs. Fall times

— Clock skews to register bits

e Bottom line — “data skew” is inevitable
— aka Bus Skew
— Longer wires => More skew

e What s the solution??

Sending Multiple Data Bits

e Must send a “clock” with the data
— Waits until data is stable
— De-skewing delay

. §(cIkB) > 2 f(clKA)
> - -
A A
[~ |
clkA > —{>0—__J » dataValid

clkB

e Balancing path delays. ..
 What’s wrong with this solution?

Sending Multiple Data Bits

e What’s the right way to do it?

clkA

I
—{>0—

\/

clkB

P dataValid

Sending Multiple Data Bits

e Therightwaytodoit...

clkA - P dataValid

?I_
\/

clkB

Sending Multiple Data Bits

Slightly different alternative . ..

P dataValid

?I_
\/

EN

clkA

clkB

Sequential Logic
Counters and Registers

Counters

® Introduction: Counters

® Asynchronous (Ripple) Counters

® Asyvnchronous Counters with MOD number <
2n

® Asyvnchronous Down Counters

B Cascading Asynchronous Counters

76

Lecture 13: Sequential Logic
Counters and Registers

Svynchronous (Parallel) Counters

Up/Down Synchronous Counters

Designing Synchronous Counters

Decoding A Counter

Counters with Parallel Load

77

Lecture 13: Sequential Logic
Counters and Registers

Registers

Introduction: Registers

*»» Simple Registers
*»» Registers with Parallel Load

Using Registers to implement Sequential Circuits

Shift Registers

% Serial In/Serial Out Shift Registers

¢ Serial In/Parallel Out Shift Registers
» Parallel In/Serial Out Shift Registers
» Parallel In/Parallel Out Shift Registers

78

Lecture 13: Sequential Logic
Counters and Registers

Bidirectional Shift Registers

An Application — Serial Addition

Shift Register Counters
* Ring Counters
s Johnson Counters

Random-Access Memory (RAM)

79

Introduction: Counters

Counters are circuits that cycle through a specified
number of states.

Two types of counters:
% synchronous (parallel) counters
% asynchronous (ripple) counters

Ripple counters allow some flip-flop outputs to be
used as a source of clock for other flip-flops.

Synchronous counters apply the same clock to all
flip-flops.

Asynchronous (Ripple) Counters

" Asynchronous counters: the flip-flops do not
change states at exactly the same time as they do
not have a common clock pulse.

" Also known as riﬁple counters, as the input clock
pulse “ripples” through the counter — cumulative
delay is a drawback.

" 1 flip-flops — a MOD (modulus) 2" counter.
(Note: A MOD-x counter cycles through x states.)

® Qutput of the last flip-flop (MSB) divides the
input clock frequency by the MOD number of the
gqu_gter, hence a counter is also a frequency
ivider.

Asynchronous (Ripple) Counters

" Example: 2-bit ripple binary counter.

® Qutput of one flip-flop is connected to the clock
input of the next more-significant flip-flop.

HIGH —s
—1J Qo *—J Ql
cek LT NC 3 >C
FFO FF1
CLK 1L T2l 13l 14

Qo ‘ | Timing diagram

Q 0] 1 0 1 0 00>01—->10—>11->00...

Asynchronous (Ripple) Counters

" Example: 3-bit ripple binary counter.

CLK

Qo

Q,
Q.

HIGH —y ’
I Qo ¢ —Q; I —Q,
CLK T<C o T<C A a, T<C
FFO FF1 FF2
' 1 '3 T4l 15 16 7L s
1 0 1 1 0 1 0
0 1 1 0 1 1 Lo
0 0 0 1 1 T Lo

— Recycles back to 0

Asynchronous (Ripple) Counters

" Propagation delays in an asynchronous (ripple-
clocked) binary counter.

" |f the accumulated delay is greater than the clock
pulse, some counter states may be misrepresented!

CLK 1 2 3 4 _——
QO —_— ! ! T
Ql : : : : E i -t
Q | .
- — — o (CLK10 Q) —1 fi—— toyy (CLK 0 Q)

t
(%EK to Qp) — ; — to Q10 Q)

Asynchronous (Ripple) Counters

® Example: 4-bit ripple binary counter (negative-

edge triggered).
HIGH —» r ’
—1J Qo J—J Q, —1J Q, *—1J &
CLK —opC o»C PC PcC
K K K K
FFO FF1 FF2 FF3
CLK] | B
1 12 13 14 5 16 17 8 19 11011112113 114 115 .16
QO J. y y y y y y y y
Q, ! / 7 y y
Q) y

Asyn. Counters with MOD no. < 2"

B States may be skipped resulting in a truncated
seguence.

" Technique: force counter to recycle before going
through all of the states in the binary sequence.

" Example: Given the following circuit, determine the
counting sequence (and hence the modulus no.)

C B A
Q J Q J Q J
All J, K CLKO~—9— CLKO— cxb—_ U UL
Inputs Qe g X Qe g~ Qe g~
arel ? ?
HIGH). B
(HIGH) C_)o—

Asyn. Counters with MOD no. < 2"

" Example (cont’d):
C B A

Q J Q J Q J
Atk || bt | b | oub— 1L
Inputs Qg Qg Qg
are 1
(HIGH). 5

C_})—

Clock Mﬁf_ﬁfﬁ euEl MOD-6 counter
A produced by
¥ L .
5 clearing (a MOD-8
\ '\+ binary counter)
¢ L 1. when count of six
NAND 1 V V (110) occurs.
Output 0 i

Asyn. Counters with MOD no. < 2"

" Example (cont’d): Counting sequence of
circuit (in CBA order).

1 2 3 4 5 6 7 8 9 10 11 12
Clock

A ofilofrlof1lofr L [T LT L

B 0o 0111l oMol | \

Cﬂﬂﬂﬂllllﬂﬂ [|
NAND 4

Output o 4 V

Counter i1s a MOD-6
counter.

Asyn. Counters with MOD no. < 2"

" Fxercise: How to construct an asynchronous MOD-
5 counter? MOD-7 counter? MOD-12 counter?

" Question: The following is a MOD-? counter?

F E D C B A
—1R J Q J Q J Q J Q J Q J
o4 ol ol ol el e—nmn

(@) (@)
E_
F AllJ=K=1.

Asyn. Counters with MOD no. < 2"

" Decade counters (or BCD counters) are counters
with 10 states (modulus-10) in their sequence.
They are commonly used in daily life (e.g.: utility

meters, odometers, etc.).

" Design an asynchronous decade counter.

HIGH 7 ?
D C B A ‘
+—J Q —I—-— J Ql4¢+J Q —I—-— Q
CLK ——OPC - ODC opC e)%
K K K K
CLR CLR CLR CLR
| | l

B

Asyn. Counters with MOD no. < 2"

" Asynchronous decade/BCD counter (cont’d).

Do_

HIGH] D | | ol B Al AC)
J Q—L J o J Q—L-'—J Q (A.C)
CLK O>C —O>C {)>C —O>C
KCLR I%LR KCLR KCLR
—5 —0 5 —0
| | | l
1 y 9 10 _11
Clock
D
o J1 lo_J1 Jo_Ji Jo_J1 1o J1 1a
Co o [t 1 o o [t 1T Jo o il
B o 0o o o0 [t £ 1 1 Jo o0 o0
Ao o0 0 0 0 o0 0 [T 110

Asynchronous Down Counters

" So far we are dealing with up counters. Down
counters, on the other hand, count downward
from a maximum value to zero, and repeat.

" Example: A 3-bit binary (MOD-2>) down counter.

1—e o
g Q_Cfi-—J Q_Cl?u—J o |- 3-bit binary
CLK ——pC | =—19pC PC up counter
« Q Kk Q Kk Q
1—y g
1 o o+ o 3-bit binary
CLK —opC —opC —pC down counter
« opt L opd Ll @

Asynchronous Down Counters
" Example: A 3-bit binary (MOD-8) down counter.

@@

1—e »

I
?9
]
©
!

clk opc | PC L rT9PC .,

CLK 1) 2 y 3 y 4 / 5) 6) [
Q 0] 1 0 1 0 1 0 1 0
Q 01 1 1 Q Q 1 1 0 Q
QL ol 1 12 1 1lo 0o 0o 0

Cascading Asynchronous Counters

" Larger asynchronousé_ripple) counter can be
constructed by cascading smaller ripple counters.

" Connect last-stage output of one counter to the
clock input of next counter so as to achieve higher-
modulus operation.

" Example: A modulus-32 ripple counter constructed
from a modulus-4 counter and a modulus-8

counter.
Qo Q1 Q, Qs Qu
Tol Foll iF ol Fol Fob
R A S AR SR AR S A S
Wodulus4 T Moduuss T |

counter counter

Cascading Asynchronous Counters

® Example: A 6-bit binary counter (counts from
0 to 63) constructed from two 3-bit counters.

A, A, A, A, A, A
Count 3-bit 3-bit

ou "binary counter »binary counter
pulse

A5 A4 A3 A2 Al AO

O 0 O O 0 O
O 0 O O 0 1
O 0 O , , ,
O O O 1 1 1
O 0 1 O 0 O
O 0 1 0O 0 1

Cascading Asynchronous Counters

" |f counter is a not a binary counter, requires
additional output.

" Example: A modulus-100 counter using two
decade counters.

freq/10

1 CTENDecade CTENDecade freq/100
counter TC counter TC
CLK —r>C Q: Q Q: Qo pC Q: Q Q: Qo
freq

TC =1 when counter recycles to 0000

Synchronous (Parallel) Counters

® Synchronous (parallel) counters: the flip-flops are
clocked at the same time by a common clock pulse.

" We can design these counters using the sequential
logic design process (covered in Lecture #12).

" Example: 2-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J,K inputs).

Present Next Flip-flop

State state iInputs
@ @ A1 Ao Al A TA1 TAo

O O 0 1 0 1
u)y—w) X

1

1

1 1 O 1 1
0 1 1 0 1
1 O O 1 1

Synchronous (Parallel) Counters

" Example: 2-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J,K inputs).

Present Next Flip-flop
State state Inputs
Ar Ao Al Ao TA1 TAo TA = A,
O O 0 1 0 1
0 1 1 0 1 1 TAp=1
1 0 1 1 0 1
1 1 0 0 1 1
1
oy C o> C
« QP Kk QP

CLK .

Synchronous (Parallel) Counters

" Example: 3-bit synchronous binary counter (using T
flip-flops, or JK flip-flops with identical J, K inputs).

Present Next Flip-flop
state state inputs
A, A1 Ao A A AT TA, TAL TAg
O 0 O 0 0 1 0 0 1
O 0 1 0 1 0 0 1 1
O 1 O 0 1 1 0 0 1
O 1 1 1 O O 1 1 1
1 0 O 1 0 1 0 0 1
1 0 1 1 1 0 0 1 1
1 1 O 1 1 1 0 0 1
1 1 1 0 O O 1 1 1
n (1] 1) SN
4 { 1] A] {2y
— — —
Ao AO AO
TA2:A1.A0 TA]_:AO TA():].

Synchronous (Parallel) Counters 99

Synchronous (Parallel) Counters

® Example: 3-bit synchronous binary counter (cont’d).

TA, = A1.Ag TA1 =AgTAp =1
A A Ao
| + +
Q Q Q
K K A K

o 11 1 -_L

Synchronous (Parallel) Counters

® Note that in a binary counter, the nt bit (shown
underlined) is always complemented whenever

011..11 — 100...00
or 111..11 — 000...00

" Hence, X, is complemented whenever
XX, - XX = 11...11.

" As aresult, if T flip-flops are used, then
TX, =X 1 X 5o e X1 0 X

Synchronous (Parallel) Counters

" Example: 4-bit synchronous binary counter.

CLK

TA;=A, . A . A
TA,=A; . A,
TA, = A,
TA =1
Dﬁl-Ao Déz.Al.Ao
J

Synchronous (Parallel) Counters

® Example: Synchronous decade/BCD counter.

Clock pulse Qs Q2 Qi Qo
Initially O 0 0 O

1 O 0O 0 1

2 O 0 1 O

3 O 0 1 1

4 0 1 0 O

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 O 0 O

9 1 0O 0 1

10 (recycle) 0 O O 0

T,=1
T, =Q3.Q
T, = Q1.Qq

T3=0Q,.Q:1.Q + Q3.Qp

Synchronous (Parallel) Counters

. Example: Synchronous decade/BCD counter
(cont’d).

T,=1

T, =Q3.Qp

T, =Q1.Qg
T3=Q,.Q1.Qp + Q3.Qp

L
Qo t— L i]:D_L
1TQJ;D_LTQ&|_D_LQQJ— T ol

C b C o bC Ne

Up/Down Synchronous Counters

® Up/down synchronous counter: a
bidirectional counter that is capable of
counting either up or down.

® An input (control) line Up/Down (or simply
Up) specifies the direction of counting.

“*Up/Down =1 — Count upward

< Up/Down = 0 — Count downward

Up/Down Synchronous Counters

® Example: A 3-bit up/down synchronous

binary counter.

Clock pulse Up Q. Qi Qo Down
— —
0 > 0 0 0
1 o0 01 5
2 S0 10 3
3 0 1 1 %
4 @ 1 0 0 %
5 &« 1 0 1 <
6 “« 1 1 o0
7 & 1 1 1 e

TQy=1
TQ; = (Qp.Up) + (Qy".Up")
TQ, = (Qp.Q:.Up) +(Qq. Q. Up")

Up counter
TQy=1
TQ; = Qg
TQ, = Qu.Qq

Down
counter

TQ, =1
TQ; = Qg

'\{2 \do’ \{1,

Up/Down Synchronous Counters

® Example: A 3-bit up/down synchronous

binary counter (cont’d).
TQ, =1

TQ; = (Qp.Up) + (Qy".Up")

TQ, = (Qp.Q:.Up) +(Qq. Q. Up")

s =l
Qo Qs
1= o 10— o)
Q'P— Q'P—
>o——) -

DC

CLK

Designing Synchronous Counters

" Covered in Lecture #12. / @

" Example: A 3-bit Gray
code counter (using JK

flip-flops). \‘/‘

Present Next Flip-flop
state State inputs
Q Q1 Qo Q2 Qi Qo JQ2 KQz JQ:i KQ:i JQo KQo
O 0O O 0 0 1 0 X 0 X 1 X
O 0 1 0 1 1 0 X 1 X X 0
O 1 O 1 1 0 1 X X 0 0 X
O 1 1 0 1 0 0 X X 0 X 1
1 0 O 0 0 0 X 1 0 X 0 X
1 0 1 1 0 0 X 0 0 X X 1
1 1 O 1 1 1 X 0 X 0 1 X
1 1 1 1 0 1 X 0 X 1 X 0

Designing Synchronous Counters 108

Designing Synchronous Counters
® 3-bit Gray code counter: flip-flop inputs.

1%
Qz\ 00 01 11 10

: B

1| x| x| x| x

JQ, =Q:.Q¢

1%
Qz\ 00 01 11 10

Olfx][x |x [x

1)

KQ, =Q;.Qq

1%
Qz\ 00 01 11 10

O |2 [X]]|X
1 X | X
JQ; = Q,".Qq

1%
Qz\ 00 01 11 10

O x

X

11X

X |

B

KQ; = Q,.Qq

Designing Synchronous Counters

1%
Qz\ 00 01 11 10

o1 [x]|x
1 [x|x]1)
JQu = Q,.Q; + Q,.Q¢
=(Q,® Q)
Q1
Qz\ 00 01 11 10
ox | [
1](x | 1] X

KQy = Q,.Q; + Q,.Q,
=Q,®Q,

109

Designing Synchronous Counters

" 3-bit Gray code counter: logic diagram.

-IQZ Ql QO JQ1 Qz QO -IQO (QZ S Q)
KQZ Ql Qo KQ1 Qz Qo KQO Qz) Ql

L
._3. o— ; Qo -— 3 Ql 3 Qz
D2 oD oF D °
D C —C o —C o
SO oD A D o
Qo

CLK *

Decoding A Counter

" Decoding a counter involves determining
which state in the sequence the counter is in.

B Differentiate between active-HIGH and active-
LOW decoding.

" Active-HIGH decoding: output HIGH if the
counter is in the state concerned.

® Active-LOW decoding: output LOW if the
counter is in the state concerned.

O o>

Decoding A Counter

® Example: MOD-8 ripple counter (active-HIGH
decoding).

Clock _il_

1_2 3 4 5_6_7_8_9_ 10

1T T

Qw> Oomwx> Qux

wllvlvle

HIGH only on count of
ABC =000

HIGH only on count of
ABC =001

HIGH only on count of
ABC =010

HIGH only on count of
ABC =111

Decoding A Counter

" Example: To detect that a MOD-8 counter is in
state 0 (000) or state 1 (001).

D

D

OmW>Qmx>

Clock

BI

-

_0_1 2 3 _4 5 _6_7_8_9_ 10

HIGH only on count of
— ABC=000o0r ABC =
001

= Example: To detect that a MOD-8 counter is In
the odd states (states 1, 3, 5 or 7), simply use C.

Clock

C

iy

1

1]

2

3_4

1]

5

6_7_8_9_ 10

UL

L

HIGH only on count of
odd states

Counters with Parallel Load

" Counters could be augmented with parallel load
capability for the following purposes:

¢ To start at a different state
% To count a different sequence

“+ As more sophisticated register with
increment/decrement functionality.

Counters with Parallel Load
" Different ways of getting a MOD-6 counter:

ALALA, A,

—
|

{1

Load

l, 1o 1, 1

«— Count=1
— Clear=1
— CP

Inputs =0 —I—I—I—T

(a) Binary states 0,1,2,3,4,5.

ALALA, A,

_OC

i1

Clear |

l, 1o 1, 1

«— Count=1
— Load =0
— CP

TT11

Inputs have no effect
(b) Binary states 0,1,2,3,4,5.

A AA A
Carry-out T T T T e count =1
— Clear =1
Load | | | | k— cp
TT1T1
1 010

(c) Binary states 10,11,12,13,14,15.

ALALA, A,

$ 111

Load

l, 1o 1, 1

— Count=1
— Clear=1
— CP

TTT1

0011

(d) Binary states 3,4,5,6,7,8.

Counters with Parallel Load

" 4-bit counter with Lot — ol e
parallel load. \ D
—Da—:D
Clear CP Load Count Function
0 X X X Clearto0 1)
1 X 0 0 No change
1 T 1 X Load inputs —)
1 T 0 1 Next state n P
__‘\
h |/
)
. 1

| :-:;-

)) K

1~

.
F JQ
rl-./ ¥

|

) !0

: 1 <>
QEE K
i 1 7
) 7 a

1 <>
1~ k

Clear

vv@

cP

Introduction: Registers

" An n-bit register has a group of n flip-flops and
some logic gates and is capable of storing n bits of
information.

" The flip-flops store the information while the gates
control when and how new information is
transferred into the register.

® Some functions of register:
“ retrieve data from register
% store/load new data into register (serial or parallel)
% shift the data within register (left or right)

Simple Registers

" No external gates.

" Example: A 4-bit register. A new 4-bit data is
loaded every clock cycle.

cp] W Wi [

Registers With Parallel Load

" |nstead of loading the register at every clock pulse,
we may want to control when to load.

" [oading a register: transfer new information into
the register. Requires a load control input.

" Parallel loading: all bits are loaded simultaneously.

Registers With Parallel Load
Load _[>o_,_[>o_ : Q_l_AO

ly

'—

W{g

|
S RALE:

CLK >o

CLEAR

Using Registers to implement

Sequential Circuits

® A sequential circuit may consist of a register
(memory) and a combinational circuit.

Next-state value

» Register
Clock ——

Inputs

Combin-
ational
circuit

» Outputs

The external inputs and present states of the

register determine the next states of the register
and the external outputs, through the

combinational circuit.

The combinational circuit may be implemented

by any of the methods covered in MSI
components and.Programmable Logic Devices.

Using Registers to implement

Sequential Circuits
" Example 1:

F=2m(4,6)=A.x
A" =rm(1,2,56)=A,x" +A,'x=A, D x
y=:m(3,7) =A,.x

Present Next
state Input State Output
Al A2 X A1+ A2+ Yy
0 0 0 0 0 0 Ax A —\
0 0 1 0 1 0 1 ﬁio—_/
0 1 0 0 1 0 A, DX A
0o 1 1 0 o 1 ’ I) O
1 0 0 1 0 0 l D_
1 0 1 0o 1 0 X y
1 1 0 1 1 0
1 1 1 0 0 1

Using Registers to implement

Sequential Circuits
" Example 2: Repeat example 1, but use a ROM.

Address Qutputs
1 2 3 1 2 3
0 0 0 0 0 0
0 0 1 0 1 0 A
0 1 0 0 1 0 g
0 1 1|0 0 1 A, 8x3
1 0 O 1 0 O ROM
1 0 1 0 1 0O X >y
1 1 0 1 1 0
1 1 1 0O 0 1
ROM truth

table

Shift Registers

" Another function of a register, besides storage, is to
provide for data movements.

" Each stage (flip-flop) in a shift register represents
one bit of storage, and the shifting capability of a
register permits the movement of data from stage
to stage within the register, or into or out of the
register upon application of clock pulses.

Shift Registers

" Basic data movement in shift registers (four
bits are used for illustration).

Datain —™ —+ +

L

— Data out

(a) Serial in/shift right/serial out

Data out <+

.

.

- «1 |— Datain

(b) Serial in/shift left/serial out

Data in

T1171

(c) Parallel in/serial out

— Data out

Data in —

+-

L

L

T1717

Data out

(d) Serial in/parallel out

+- >

(f) Rotate right

—

—

.

(g) Rotate left

Data in

T1171

T1717

Data out

(e) Parallel in /
parallel out

Serial In/Serial Out Shift Registers

" Accepts data serially — one bit at a time — and
also produces output serially.

Serial data Qo Q; Q, Q; Serial data
input D Q D Q D Q D Q output

D C —P>C D C D C

CLK ® ® °

Serial In/Serial Out Shift Registers

" Application: Serial transfer of data from one
register to another.

Clock
Shift control

Clock

Shift
control

CP

Sl

)
|/

» Shift register A

-]

SOl Sl

» Shift register B

<«—Y\/ordtime

—>

SO

Serial In/Serial Out Shift Registers

® Serial-transfer example.

Timing Pulse Shift register A Shift register B Serial output of B

Initial value \ NN 1 0
After T, 1\‘ 10 ~ 1 o\‘ \‘1 1
After T, 1 1 l 0 1 1 0 O 0
After Ts 0 1 1 1 0 1 1 0 0
After T, 1 0 1 1 1 0 1 1 1

Serial In/Parallel Out Shift Registers

" Accepts data serially.

" Qutputs of all stages are available simultaneously.

Datainput ——p Qf+—|D Qf+——D Q-+ D QF
(x: Fx: (x: DC
CLK
Qo Ql QZ Q3
Data input D SRG 4 _
CLK —{>C Logic symbol

Parallel In/Serial Out Shift Registers

" Bits are entered simultaneously, but output is serial.

—

Dy

Data input
A

D,

D,

SHIFT/LOAD —T—[>o

D Q

pC

11
%?

D Q

/

pC

Qi

1]
%?

D Q

pC

Q2

bl

Serial
D Qp— data
Qs out
D C

CLK

/
SHIFT.Q, + SHIFT".D,

Parallel In/Serial Out Shift Registers

" Bits are entered simultaneously, but output is serial.

Data in

—
DO Dl D2 D3
SHIFT/LOAD > SRG 4 _
— Serial data out
CLK "w>C

Logic symbol

Parallel In/Parallel Out Shift Registers

" Simultaneous input and output of all data bits.

Parallel data inputs

A
el N
D, D, D, D,
o o Yo o Yo o YWip o
D C D C D C D C
CLK — . :

Qo Q1 Q> Qs
— _

——
Parallel data outputs

Bidirectional Shift Registers

® Data can be shifted either left or right, using a
control line RIGHT/LEFT (or simply RIGHT) to
indicate the direction.

RIGHT/LEFT ——T—[>c ' ' y

4 4
Serial o I am
o H ISJ Q ISJ H ISJ .—IH !BJ
RIGHT.Q + -~~~ [| |
RIGHT".Q, °°n ° e ° e, S
D C D C D C D C
Qo

CLK ¢ ® ¢

Bidirectional Shift Registers
" 4-bit bidirectional shift register with parallel load.

Parallel outputs

A
— —
A, A, A, A,
Clear Q Q Q Q
‘ P fo A l_o A I_o A D
CLK DC * * .
Si —— ax1 o 4ax1 o 4x1 o 4ax1
So MUX J MUX J MUX J MUX
3210 3210 3210 3210
Serial _
input for _Se”atllf
shift-right | | | | Inputtor
| - 3 2 > shift-left
S

Parallel inputs

Bidirectional Shift Registers

" 4-bit bidirectional shift register with parallel load.

Mode Control

S1 So Register Operation
0 0 No change

0 1 Shift right

1 0 Shift left

1 1 Parallel load

An Application — Serial Addition

" Most operations in digital computers are done
in parallel. Serial operations are slower but

require less equipment.
" A serial adder is shown below. A < A + B.

SI
e > SO
Shift-right ° , _ _ J x
cp —e | Shift-register A 1y FA S
J Z C
E | !,
xternal input i dJ8 | SO
® | Shift-register B
QD
— y
|/

?—Clear

An Application — Serial Addition

" A=0100; B=0111. A+ B=1011 is stored in
A after 4 clock pulses.

Initial:

A:0100 Q: 0

B:0111 B

Step1: 0+1+0 A:1010 Q: 0
5=1,C=0 B:x011 -
Step2: 0+1+0 A:1101 Q: 0
>=LC=0 B:xx01 B
Step3: 1+1+0 A:0110 Q1
5=0,C=1 B:xxx0 =
Step4: 0+0+1 A:1011 Q: 0
>=LC=0 B: X X X X B

Shift Register Counters

" Shift register counter: a shift register with the serial
output connected back to the serial input.

" They are classified as counters because they give a
specified sequence of states.

" Two common types: the Johnson counter and the
Ring counter.

Ring Counters

One flip-flop (stage) for each state in the sequence.

The output of the last stage is connected to the D
input of the first stage.

An n-bit ring counter cycles through n states.

No decoding gates are required, as there is an
output that corresponds to every state the counter
IS in.

Ring Counters

® Example: A 6-bit (MOD-6) ring counter.

PRE

& Qo 80— Q, 80— Q, 0— Q, 0— Q, 0— Qs
DQ DQ DQ D Q D Q D Q
D D D D D
CIR - l { I { Y
CLK ® ® ® ® ®
Clock | Qo Q1 Q2 Q3 Qs Qs
—0 1 0 0 0 0 0
1 0O 1 0 0 0 0
2 0 0 1 0 0 0
3 0 0 0 1 0 O
4 0 0 0 0 1 0
|5 O 0 0 0 0 1

Johnson Counters

The complement of the output of the last stage is
connected back to the D input of the first stage.

Also called the twisted-ring counter.

Require fewer flip-flops than ring counters but
more flip-flops than binary counters.

An n-bit Johnson counter cycles through 2n states.

Require more decoding circuitry than ring counter
but less than binary counters.

Johnson Counters
® Example: A 4-bit (MOD-8) Johnson counter.

QO Ql QZ
D Q D Q D Q D Q
S S S iy
CR I i I T
CLK ® ® i
Clock | Qo Q. Q: Qs
50 0 0 0 O @
1 1 0 0 O
2 1 1 0 0 £
3 1 1 1 0 @
4 1 1 1 1 X
5 0o 1 1 1 @
6 o o0 1 1 S
|7 0 0 0 1 \@

Johnson Counters

" Decoding logic for a 4-bit Johnson counter.

Clock

Decoding

~NOoO ab~WwWDNE

OO0OO0ORRLRELRLREFRO|I>

OO FRRFRPFRLPFLPOO

OFRFRPFRPPFPOOO|IO
P RPFRPPFPOOOOO|CT

A'.D’
A.B'
B.C
C.D'
A.D
A'.B
B'.C
C'.D

sle

O

State 6

State 7

TYTT T

State O

State 1

State 2

State 3

State 4

State 5

Random Access Memory (RAM)

" A memory unit stores binary information in groups
of bits called words.

" The data consists of n lines (for n-bit words). Data
input lines provide the information to be stored
(written) into the memory, while data output lines
carry the information out (read) from the memory.

" The address consists of k lines which specify which
word (among the 2X words available) to be selected
for reading or writing.

" The control lines Read and Write (usually combined
into a single control line Read/Write) specifies the
direction of transfer of the data.

Random Access Memory (RAM)

" Block diagram of a memory unit:

n data
Input lines

f

K .
k address lines —/— Memory unit
2k words

n bits per word

f

n data
output lines

Read/Write —

Random Access Memory (RAM)

" Content of a 1024 x 16-bit memory:

Memory address

binary decimal ~ Memory content
0000000000 0 |1011010111011101
0000000001 1 |1010000110000110
0000000010 2 | 0010011101110001
1111111101 1021 | 1110010101010010
1111111110 1022 | 0011111010101110
1111111111 1023 | 1011000110010101

Random Access Memory (RAM)

" The Write operation:

» Transfers the address of the desired word to the
address lines

* Transfers the data bits (the word) to be stored in
memory to the data input lines

% Activates the Write control line (set Read/Write to 0)

" The Read operation:

» Transfers the address of the desired word to the
address lines

% Activates the Read control line (set Read/Write to 1)

Random Access Memory (RAM)

" The Read/Write operation:

Memory Enable Read/Write Memory Operation

0 X None
1 0 Write to selected word
1 1 Read from selected word

= Two types of RAM: Static and dynamic.
< Static RAMs use flip-flops as the memory cells.

< Dynamic RAMs use capacitor charges to represent
data. Though simpler in circuitry, they have to be
constantly refreshed.

Random Access Memory (RAM)

" Asingle memory cell of the static RAM has
the following logic and block diagrams.

Select

l

IDO H)—r
Input ._)—SQ

0<] T

Read/Write

Logic
diagram

\/

Output

Select

l

Input — BC »OQutput

I

Read/Write

Block
diagram

Random Access Memory (RAM)

® | ogic construction of a 4 x 3 RAM (with

decoder an

P Vo Y o TP R T

Data
iiiiii
J L
Word O
D
" 1 { 1
BC b BC BC
I T }
D YWord 1 =
Address.) 1 +
inputs 2.4 B - B ac
decoder } I‘ ¥
Ward 2
D
:) } ¥
BC = BC BC
i i 4
Word 3
Dy * 1 1
Memory I EBEC ——| ey BC *‘ BC
te
Read/write i $ t

uuuuuuu

Random Access Memory (RAM)

" An array of RAM chips: memory chips are
combined to form larger memory.

" A 1K x 8-bit RAM chip:

Input data 8//

Address
Chip select
Read/write

RAM 1K x 8

DATA (8)
ADRS (10)
CS

RW

(8)

8,

>— Output data

Block diagram of a 1K x 8 RAM chip

Random Access Memory (RAM)

Address

' - . N\
Lines Lines
11 10 0-9

Input data
8 lines

0-1023
l+ DATA (8) (8) |~

2X4

. 7— ADRS (10)

decoder

CS
RW 1K x 8

1Sy

WNEFLO

:Sl

1024 — 2047
¢/ DATA (8) (8)|——o
7—{ ADRS (10)

CS
RW 1K x 8

Read/write ®

2048 — 3071

¢/{DATA(B) (B}
L 7— ADRS (10)

CS
RW 1K x 8

" 4K x 8 RAM.

3072 — 4095
DATA (8)
ADRS (10) @) I

S N

€S 11k x8 | | output

RW
data

Random Access Memory (RAM) 152

End of segment

